3-olets

Q:1/1=40 L:1/4 c(3c/c/c/ | (3c/c/c/c | (3(c/c/c/) (3z/c/c/ | (3c/z/c/ (3c/c/z/ | (3c//c//c// (3(c//c//c//) (3c//z//c// (3z//c//c// |]


3-olets with !beambr1! !beambr2!

L:1/8 c(3c/c/c/ | (3c/c/c/c | (3c/c/c/(3!beambr1!c/c/c/ | (3c/c/c/(3c/c/c/ |]

L:1/16 c(3c/c/c/ | (3c/c/c/c | c(3c/c/c/(3!beambr2!c/c/c/c | c(3c/c/c/(3c/c/c/c |]


3-olets + rests + ties

Q:1/1=40 L:1/4 (3ccc (3c-cc | (3.ccc- (3czc |]

5-olets

L:1/4 (5cczcc | (5c/c/z/c/c/ | (5c//c//c//c//c// |]

6-olets

L:1/4 (6cczccc | (6c/c/z/c/c/c/ | (6c//c//c//z//c//c// |]

7-olets

L:1/4 (7ccczccc | (7c/c/c/z/c/c/c/ | (7c//c//c//z//c//c//c// |]

%%tuplets int int int int

Define how to draw the tuplets.
The int values tell when, what, which and where to draw.

when whatwhich where
0 auto a square bracket a simple number (value of 'p') auto
1 never a slur no value above the notes
2 always beam extension on rests
(does not work yet)
a ratio ('p':'q') below the notes

L:1/4 (3c/c/c/ \ %%tuplets 1 0 0 (3c/c/c/ \ %%tuplets 2 0 0 (3c/c/c/ \ %%tuplets 0 0 2 (3c/c/c/ |\ %%tuplets 2 0 2 (3c/c/c/ \ %%tuplets 2 1 0 (3c/c/c/ \ %%tuplets 0 0 0 (3ccc | %%tuplets 2 0 2 2 (3c/c/c/ \ %%tuplets 2 1 0 1 (3c/c/c/ \ %%tuplets 0 0 0 2 (3ccc |